26 research outputs found

    Facilitating the Child–Robot Interaction by Endowing the Robot with the Capability of Understanding the Child Engagement: The Case of Mio Amico Robot

    Get PDF
    AbstractSocial Robots (SRs) are substantially becoming part of modern society, given their frequent use in many areas of application including education, communication, assistance, and entertainment. The main challenge in human–robot interaction is in achieving human-like and affective interaction between the two groups. This study is aimed at endowing SRs with the capability of assessing the emotional state of the interlocutor, by analyzing his/her psychophysiological signals. The methodology is focused on remote evaluations of the subject's peripheral neuro-vegetative activity by means of thermal infrared imaging. The approach was developed and tested for a particularly challenging use case: the interaction between children and a commercial educational robot, Mio Amico Robot, produced by LiscianiGiochi©. The emotional state classified from the thermal signal analysis was compared to the emotional state recognized by a facial action coding system. The proposed approach was reliable and accurate and favored a personalized and improved interaction of children with SRs

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    The BET Protein Inhibitor Apabetalone Rescues Diabetes-Induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1

    No full text
    AIMS Therapeutic modulation of blood vessel growth holds promise for the prevention of limb ischemia in diabetic (DM) patients with peripheral artery disease (PAD). Epigenetic changes, namely posttranslational histone modifications, participate in angiogenic response suggesting that chromatin-modifying drugs could be beneficial in this setting. Apabetalone (APA), a selective inhibitor of bromodomain (BRD) and extra-terminal (BET) proteins, prevents BRD4 interactions with chromatin thus modulating transcriptional programs in different organs. We sought to investigate whether APA affects angiogenic response in diabetes. RESULTS As compared to vehicle, APA restored tube formation and migration in human aortic endothelial cells (HAECs) exposed to high glucose (HG) levels. Expression profiling of angiogenesis genes showed that APA prevents HG-induced upregulation of the anti-angiogenic molecule Thrombospondin-1 (THBS1). ChIP-seq and chromatin immunoprecipitation (ChIP) assays in HG-treated HAECs showed the enrichment of both BRD4 and active marks (H3K27ac) on THBS1 promoter, whereas BRD4 inhibition by APA prevented chromatin accessibility and THBS1 transcription. Mechanistically, we show that THBS1 inhibits angiogenesis by suppressing VEGFA signaling, while APA prevents these detrimental changes. In diabetic mice with hindlimb ischemia, epigenetic editing by APA restored THSB1/VEGFA axis thus improving limb vascularization and perfusion as compared to vehicle-treated animals. Finally, epigenetic regulation of THSB1 by BRD4/H3K27ac was also reported in DM patients with PAD as compared to non-diabetic controls. INNOVATION This is the first study showing that BET protein inhibition by APA restores angiogenic response in experimental diabetes. CONCLUSIONS Our findings set the stage for preclinical studies and exploratory clinical trials testing APA in diabetic PAD

    Methylation of the Hippo effector YAP by the methyltransferase SETD7 drives myocardial ischaemic injury: a translational study

    Full text link
    AIMS Methylation of non-histone proteins is emerging as a central regulatory mechanism in health and disease. The methyltransferase SETD7 has shown to methylate and alter the function of a variety of proteins in vitro; however, its function in the heart is poorly understood. The present study investigates the role of SETD7 in myocardial ischaemic injury. METHODS AND RESULTS Experiments were performed in neonatal rat ventricular myocytes (NRVMs), SETD7 knockout mice (SETD7-/-) undergoing myocardial ischaemia/reperfusion (I/R) injury, left ventricular (LV) myocardial samples from patients with ischaemic cardiomyopathy (ICM), and peripheral blood mononuclear cells (PBMCs) from patients with ST-elevation MI (STEMI). We show that SETD7 is activated upon energy deprivation in cultured NRVMs and methylates the Hippo pathway effector YAP, leading to its cytosolic retention and impaired transcription of antioxidant genes manganese superoxide dismutase (MnSOD) and catalase (CAT). Such impairment of antioxidant defence was associated with mitochondrial reactive oxygen species (mtROS), organelle swelling, and apoptosis. Selective pharmacological inhibition of SETD7 by (R)-PFI-2 restored YAP nuclear localization, thus preventing mtROS, mitochondrial damage, and apoptosis in NRVMs. In mice, genetic deletion of SETD7 attenuated myocardial I/R injury, mtROS, and LV dysfunction by restoring YAP-dependent transcription of MnSOD and CAT. Moreover, in cardiomyocytes isolated from I/R mice and ICM patients, (R)-PFI-2 prevented mtROS accumulation, while improving Ca2+-activated tension. Finally, SETD7 was up-regulated in PBMCs from STEMI patients and negatively correlated with MnSOD and CAT. CONCLUSION We show a methylation-dependent checkpoint regulating oxidative stress during myocardial ischaemia. SETD7 inhibition may represent a valid therapeutic strategy in this setting

    Methylation of the Hippo effector YAP by the methyltransferase SETD7 drives myocardial ischemic injury: a translational study

    No full text
    Aims: Methylation of non-histone proteins is emerging as a central regulatory mechanism in health and disease. The methyltransferase SETD7 has shown to methylate and alter the function of a variety of proteins in vitro, however its function in the heart is poorly understood. The present study investigates the role of SETD7 in myocardial ischemic injury. Methods and results: Experiments were performed in neonatal rat ventricular myocytes (NRVMs), SETD7 knockout mice (SETD7-/-) undergoing myocardial ischemia-reperfusion (I/R) injury, left ventricular (LV) myocardial samples from patients with ischemic cardiomyopathy (ICM) and peripheral blood mononuclear cells (PBMCs) from patients with ST-elevation MI (STEMI). We show that SETD7 is activated upon energy deprivation in cultured NRVMs and methylates the Hippo pathway effector YAP, leading to its cytosolic retention and impaired transcription of antioxidant genes manganese superoxide dismutase (MnSOD) and catalase (CAT). Such impairment of antioxidant defense was associated with mitochondrial reactive oxygen species (mtROS), organelle swelling and apoptosis. Selective pharmacological inhibition of SETD7 by (R)-PFI-2 restored YAP nuclear localization thus preventing mtROS, mitochondrial damage and apoptosis in NRVMs. In mice, genetic deletion of SETD7 attenuated myocardial I/R injury, mtROS and LV dysfunction by restoring YAP-dependent transcription of MnSOD and CAT. Moreover, in cardiomyocytes isolated from I/R mice and ICM patients (R)-PFI-2 prevented mtROS accumulation while improving Ca2+-activated tension. Finally, SETD7 was upregulated in PBMCs from STEMI patients and negatively correlated with MnSOD and CAT. Conclusions: We show a methylation-dependent checkpoint regulating oxidative stress during myocardial ischemia. SETD7 inhibition may represent a valid therapeutic strategy in this setting
    corecore